Корзина
Товаров 0на сумму 0 руб.
Ваш город: Владивосток
Тепловой насос SILA AM-18,5 I (HC) инверторный типа воздух-вода предназначен для использования в системах отопления, горячего водоснабжения и системах охлаждения. Тепловой насос "выкачивает" тепловую энергию из уличного воздуха и направляет ее потребителю, в систему отопления и горячего водоснабжения. Использование теплового насоса позволяет экономить до 80 % расходов на отопление, горячее водоснабжение и охлаждение. Основные компоненты теплового насоса SILA произведены в Японии и Италии, что обеспечивает его максимальную надежность и эффективность.
Вложенные в тепловой насос средств, как правило, окупаются в среднем за 4-9 лет. Сама же система сохраняет работоспособность на протяжении 15-20 лет. Помимо снижения затрат на отопление и кондиционирование зданий, тепловые насосы до 5 раз уменьшают количество вредных выбросов в атмосферу по сравнению с традиционными отопительными системами. Получается, что распространение тепловых насосов в автономных системах теплоснабжения-кондиционирования, способно одновременно решить три актуальные для страны задачи – экономическую, экологическую и проблему сбережения энергии.
Для вашего удобства и примерного понимания эффективности теплового насоса, мы создали специальный онлайн калькулятор, который, благодаря температурным данным NASA и нашей математической модели, способен рассчитать точную стоимость 1 кВт*ч тепловой энергии при использовании насоса в любой точке мира.
Все и всегда под полным контролем: Наличие встроенного WI-FI модуля дает вам возможность не только производить мониторинг, но и управлять насосом из любой точки земного шара. В режиме реального времени через специальное приложение установленное на вашем телефоне вы сможете включить, выключить насос, а так же задать необходимую температуру ( к примеру к вашему возвращению домой ). Приложение доступно как для телефонов Android так и IOS.
Принцип действия теплового насоса:
Тепловой насос – это система, с помощью которой можно переносить тепло от менее нагретого тела к более нагретому, увеличивая температуру последнего. Принцип работы теплового насоса очень напоминает по своей сути работу холодильника. В то время как холодильник отводит тепловую энергию и направляет ее наружу, то есть из внутренней части холодильника ( внутри холодильника холодно, а снаружи конденсатор горячий ), тепловой насос делает наоборот: он забирает тепловую энергию от окружающей среды за пределами помещения и преобразует ее в полезную для отопления. Принцип действия теплового насоса основан на том факте, что любое тело с температурой выше абсолютного нуля ( - 273,15 °С ) обладает запасом тепловой энергии, а так как согласно закону термодинамике достичь температуры абсолютного нуля не может ни одно физическое тело, запасы тепла – бесконечны.
Конструктивно любой тепловой насос состоит из двух частей: наружной, которая «забирает» тепло возобновляемых источников ( воздух, вода, земля ) , и внутренней, которая отдает это тепло в систему отопления или кондиционирования вашего дома. Современные тепловые насосы отличаются высокой энергоэффективностью, что в практическом плане означает следующее - потребитель, т.е. владелец дома, используя тепловой насос, тратит на обогрев или охлаждение своего жилища, в среднем, всего четверть тех денег, которые он потратил бы, если теплового насоса не было.
Иначе говоря, в системе с тепловым насосом 75% полезного тепла (или холода) обеспечивается за счет бесплатных источников - тепла земли, грунтовых вод или нагретого в помещениях и выбрасываемого на улицу использованного воздуха и только за оставшиеся 25% вы платите энергогенерирующим кампаниям.
Преимущества инверторного теплового насоса SILA AM-18,5 I (НС)
Технические характеристики | |
---|---|
Тип | Воздух-вода |
Конструкция | Моноблок |
Рабочие режимы | Отопление / ГВС / Охлаждение |
Рабочее напряжение |
220-240 В / 50 Гц / 1 фаза |
Мощность нагрева | 18,5 кВт |
COP | 4,45 |
Мощность охлаждения |
13 кВт |
Потребляемая мощность |
4,15 кВт |
Ток | 20,2 А |
Максимальный ток | 29,24 А |
Максимальная температура нагрева |
55°С |
Хладагент | R410A |
Температура эксплуатации | -20 +45°С |
Контроллер | Carel Wi-Fi |
Вентилятор кол-во / расход / мощность | 2 шт / 5500 м3/час / 210 Вт |
Теплообменник / подключение | Пластинчатый / G1" |
Объемный расход мин / сред / макс | 0,55 / 0,88 / 1,47 л/сек |
Компрессор тип / количество | Panasonic Twin Rotary / 1 |
Уровень звукового давления | 63 дБ |
Габариты (ш х г х в) | 1100 х 475 х 1355 мм |
Вес | 124 кг |
Гарантия | 2 года |
Эффективность теплового насоса SILA
Для работы теплового насоса необходимо электричество. Потребляя электричество, тепловой насос отбирает тепловую энергию из окружающей среды (воздух, вода, земля) и передает ее теплоносителю системы отопления и ГВС. При этом выработка тепловой энергии больше потребляемой электрической мощности теплового насоса. Например, при потребляемой электрической мощности 3,7 кВт мощность нагрева составит 16,5 кВт. Коэффициент производительности теплового насоса при работе на тепло носит название СОР (Coefficient of Performance) и обозначает отношение мощности нагрева к потребляемой мощности
СОР = 4,45 ( 18,5 / 4,15 )
Производительность теплового насоса воздух-вода зависит от температуры наружного воздуха и установленной температуры нагрева воды. Чем ниже температура наружного воздуха тем ниже производительность теплового насоса.
При работе теплового насоса на охлаждение используется параметр энергетической эффективности EER (Energy Efficiency Ratio). Коэффициент EER равен отношению холодопроизводительности к потребляемой мощности.
Моноблок воздух-вода
Воздух является самым доступным источником низкопотенциального тепла, поэтому монтаж теплового насоса воздух-вода не требует дорогостоящих земляных работ (бурить скважины или рыть траншеи для укладки коллекторов). Для монтажа достаточно установить тепловой насос на улице и подвести электричество.
Инверторный компрессор Panasonic
В инверторном тепловом насосе SILA AM-18,5 I (HC) установлен инверторный компрессор, который самостоятельно плавно регулирует мощность теплового насоса в зависимости от потребности. Это дает экономию электроэнергии, отсутствие пусковых токов, снижение шума, точное поддержание заданной температуры, увеличение ресурса компрессора.
Буферная емкость для
теплового насоса
Для каждого теплового насоса воздух-вода установлено
минимальное значение объемного расхода (протока) теплоносителя. Когда объем
теплоносителя не является достаточным, используется буферная емкость, которая
устанавливается между тепловым насосом и отопительными контурами и выполняет
роль гидравлического разделителя с необходимым объемом теплоносителя.
Плюсы использования буферной емкости:
Узнать больше о буферной емкости
Использование теплового насоса в зимний период
При использовании теплового насоса в регионе с отрицательными температурами
окружающей среды, возможно замерзание теплоносителя в теплообменнике теплового насоса
и трубах системы отопления, находящихся на улице. Это может привести к
разрушению теплообменника или труб.
Для предотвращения повреждений устройства и системы отопления, в качестве теплоносителя следует использовать антифриз с температурой кристаллизации ниже минимальной наружной температуры в регионе установки устройства.
Также необходимо непрерывное электрическое питание теплового насоса, что позволяет тепловому насосу использовать автоматическую функцию защиты от замерзания при низкой наружной температуре.
Для снижения потерь тепла в зимний период, трубы системы должны быть теплоизолированы.
Если тепловой насос не используется зимой, следует отключить тепловой насос, слить теплоноситель из теплообменника, закрыть подключения, электропитание отключить, устройство накрыть чехлом для предотвращения загрязнения.
Решение проблемы замерзшего теплового насоса. Если обнаружено, что трубопровод или теплообменник теплового насоса замерзли, но не повредились, не стучите по трубопроводу и не лейте на него горячую воду. Просто дождитесь его естественного таяния.
Принципиальная схема работы теплового насоса
Фактически тепловой насос - это холодильная машина, основными элементами которой являются:
1. Газообразный хладагент (фреон) поступает в компрессор для сжатия. Компрессор используя электрическую энергию сжимает газообразный хладагент. Вследствие увеличения давления температура хладагента увеличивается.
2. Нагретый хладагент под высоким давлением поступает в конденсатор. В конденсаторе происходит передача тепла от нагретого хладагента теплоносителю. В результате хладагент охлаждается и происходит процесс конденсации (переход из газообразного состояния в жидкое).
3. После конденсатора установлен расширительный вентиль. Функция расширительного вентиля — понизить давление хладагента. Вследствие понижения давления температура хладагента падает.
4. Пройдя через расширительный вентиль хладагент поступает в испаритель, который расположен на улице. В испарителе хладагент закипает и переходит из жидкого состояния в газообразное. При этом температура кипения хладагента ниже температуры наружного воздуха (нормальная температура кипения фреона R410А при атмосферном давлении -48°С). В процессе кипения фреон отбирает тепло наружного воздуха. Далее цикл повторяется.
Инверторный тепловой насос плавно регулирует рабочую частоту компрессора, в соответствии с уличной температурой и тепловой нагрузкой. При снижении рабочей частоты компрессора, снижается потребление электроэнергии. Также происходит плавный запуск теплового насоса без высоких стартовых токов.
Старт/стоп тепловой насос имеет два состояния. Первое - работа на полную мощность, второе - режим ожидания. Имеет высокие пусковые токи в момент старта.
Фреон —это газ или жидкость (в зависимости от параметров окружающей среды) без цвета и явного запаха. Фреон химически инертен, не горит на воздухе, в обычной бытовой обстановке взрывобезопасен и совершенно безвреден для человека. Кроме холодильных машин и тепловых насосов, фреон используют как выталкивающую основу в газовых баллончиках, для изготовления аэрозолей в парфюмерии, при тушении пожаров и в качестве вспенивающего вещества (агента) в производстве полиуретана (теплоизоляции, поролона и т.п.).
Ответив всего на пару простых вопросов, вы получите оптимальный для ваших задач комплект солнечной электростанции.
Есть ли подключение к городской сети?
Какова максимальная суммарная мощность ваших электроприборов?
Хотите ли продавать излишки электроэнергии в сеть?
Нужны ли аккумуляторы для резервирования электроэнергии?
Какова максимальная суммарная мощность ваших электроприборов?
Какова максимальная суммарная мощность ваших электроприборов?
Нужны ли аккумуляторы для резервирования электроэнергии?
Какова максимальная суммарная мощность ваших электроприборов?
Нужна ли стабилизация выходного напряжения?
Какова максимальная суммарная мощность ваших электроприборов?
Какова максимальная суммарная мощность ваших электроприборов?